AN UNSTRUCTURED STEADY COMPRESSIBLE NAVIER-STOKES SOLVER WITH IMPLICIT BOUNDARY CONDITION METHOD

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Parallel Compressible 3D Navier-Stokes Solver Using Unstructured Meshes

We describe in this paper a strategy for parallelising a 3D compressible Navier-Stokes solver using unstructured meshes on a class of message-passing MIMD machines. The performance results obtained on two parallel machines, the Meiko Concerto and Intel iPSC860 are presented and compared to those obtained on CRAY.

متن کامل

Towards a Transparent Boundary Condition for Compressible Navier–stokes Equations

A new artificial boundary condition for 2D subsonic flows governed by the compressible Navier–Stokes equations is derived. It is based on the hyperbolic part of the equations, according to the way of propagation of the characteristic waves. A reference flow as well as a convection velocity are used to properly discretize the terms corresponding to the entering waves. Numerical tests on various ...

متن کامل

3d Steady Compressible Navier–stokes Equations

2000 Mathematics Subject Classification. Primary: 76N10; Secondary: 35Q30.

متن کامل

Parallel Performance Investigations of an Unstructured Mesh Navier-Stokes Solver

A Reynolds-averaged Navier-Stokes solver based on unstructured mesh techniques for analysis of high-lift configurations is described. The method makes use of an agglomeration multigrid solver for convergence acceleration. Implicit line-smoothing is employed to relieve the stiffness associated with highly stretched meshes. A GMRES technique is also implemented to speed convergence at the expense...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of computational fluids engineering

سال: 2016

ISSN: 1598-6071

DOI: 10.6112/kscfe.2016.21.1.010